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High resolution Godunov-type schemes with small stencils
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SUMMARY

Higher-order Godunov-type schemes have to cope with the following two problems: (i) the increase in
the size of the stencil that make the scheme computationally expensive, and (ii) the monotony-preserving
treatments (limiters) that must be implemented to avoid oscillations, leading to strong damping of the
solution, in particular linear waves (e.g. acoustic waves). When too compressive, limiting procedures
may also trigger the instability of oscillatory numerical solutions (e.g. in advection–dispersion phenom-
ena) via the arti�cial ampli�cation of the shorter modes. The present paper proposes a new approach to
carry out the reconstruction. In this approach, the values of the �ow variable at the edges of the com-
putational cells are obtained directly from the reconstruction within these cells. This method is applied
to the MUSCL and DPM schemes for the solution of the linear advection equation. The modi�ed DPM
scheme can capture contact discontinuities within one computational cell, even after millions of time
steps at Courant numbers ranging from 1 to values as low as 10−4. Linear waves are subject to negligi-
ble damping. Application of the method to the DPM for one-dimensional advection–dispersion problems
shows that the numerical instability of oscillatory solutions caused by the over compressive, original
DPM limiter is eliminated. One- and two-dimensional shallow water simulations show an improvement
over classical methods, in particular for two-dimensional problems with strongly distorted meshes. The
quality of the computational solution in the two-dimensional case remains acceptable even for mesh
aspect ratios �x=�y as large as 10. The method can be extend to the discretization of higher-order
PDEs, allowing third-order space derivatives to be discretized using only two cells in space. Copyright
? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The dissipative character of Godunov-type schemes makes them di�cult to use for problems
involving both strong shocks and quasi-linear waves (e.g. acoustic waves). This can be over-
come to some extent by increasing the size of the stencil to gain accuracy in variable recon-
struction (see e.g. Van Leer’s MUSCL [1], Ben-Artzi and Falcowitz’s scheme [2], Colella
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1120 V. GUINOT

and Woodward’s PPM [3]). This however leads to other problems, in particular (i) the time-
consuming character of the scheme, induced by the complexity of the formulae used for the
reconstruction (see e.g. Reference [3], that is most probably one of the most accurate, but also
complex, Godunov-type schemes known to date), and (ii) the spatial extent of the stencil that
leads to extra complexity in the treatment of boundary conditions. Moreover, increasing the
size of the stencil is not a solution when discontinuities are present in the solution, because
the values of the �ow variable at the interfaces between the computational cells are com-
puted using a continuous interpolation across cells where the pro�le is discontinuous. Also,
high-order interpolation yields valuable results when applied to smooth pro�les, but may in-
duce oscillations in the presence of discontinuities. Limiters must be used to prevent such
undesirable behaviour (see References [1–3] and [4, 5] for recent developments on limiters).
Although satisfactory when purely hyperbolic or parabolic PDEs are to be solved, classical
pro�le reconstruction and limiting may lead to unacceptable degradation of the quality of
the solution when PDEs with oscillatory solutions (such as advection–dispersion equations)
are to be solved. A �rst source of inaccuracy is the strong numerical di�usion induced by
most limiters in the neighbourhood of steep fronts that leads to a very strong damping of the
oscillations. Another source of inaccuracy is the over-compression (that is, the steepening of
shocks and contact discontinuities) induced by some limiters. The arti�cial sharpening of the
pro�le caused by over-compression leads to amplifying the shorter modes in the oscillations,
sometimes causing instability when dispersion terms are present in the PDEs to be solved.
A well-known approach for developing high resolution schemes with reduced stencils is

the so-called compact approach introduced in the nineteen-eighties. In a �rst class of compact
schemes (see References [6–8]), the higher-order space derivatives in the truncation error
of the scheme are estimated by deriving the conservation law to be solved with respect
to each direction of space successively. This allows to express third-order derivatives in a
given direction as a combination of �rst- and second-order cross-derivatives with respect
to time and the other directions of space. Since such derivatives can be estimated using
a centred, three-point stencil, removing them from the truncation error of the scheme does
not yield any increase in the stencil of the scheme. In a second class of compact schemes,
higher-order accuracy is obtained by expressing the Taylor series expansions between the
computational points as combinations of the �rst-order derivatives at several neighbouring
points. The coe�cients for such combinations can be found using e.g. Pade approximants
(see Reference [9] for recent examples and references). This yields systems of algebraic
equations, to be solved for the (unknown) derivatives.
The type of scheme proposed in the present paper does not belong to these classes of

schemes. Higher-order accuracy is achieved by using two unknown variables, namely the
average of the sought variables over the computational cells and the point values at the cell
interfaces. This approach stems from the observation that (i) the estimate of the values at
the interface of the computational cell is of key importance for the accuracy of Godunov-
type schemes, and (ii) very accurate results can be achieved using schemes with a reduced
stencil, but that make better use of the (already available) information than the point (or
cell-averaged) values of the variable. This principle is used by two schemes derived from
completely di�erent approaches: The Holly–Preissmann scheme [10] and Chang’s scheme [11].
The Holly–Preissmann scheme is a �nite di�erence, characteristic-based scheme designed at
the end of the nineteen-seventies. It solves the advection equation, not only for the variable, but
also for its �rst space derivative. Two points are su�cient to derive a third-order interpolation,
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using both the variable and its derivative at each point. The scheme has been applied to a
number of scalar, linear and non-linear advection problems [12–14]. Chang’s scheme is based
on the space–time conservation formulation. This approach consists in integrating the PDEs
to be solved over a domain that extends not only in space but also in time. The solution is
sought over a mesh that is staggered in both space and time for both the �ow variable and its
derivative. A three-points stencil is su�cient to obtain very sharp pro�les in the presence of
both shocks and contact discontinuities. Oscillations are eliminated by the local application of
arti�cial viscosity. The scheme has been applied to multi-dimensional gas dynamics [15], to
the one-dimensional shallow water equations [16] and to one-dimensional advection–di�usion
problems [17].
These two examples support the argument that making better use of the information related

to the variable within limited space brings more bene�t than complex interpolation procedures
using large stencils. The work presented here follows this line. It consists of solving the
�ow equations not only for the average value of the variable over a computational cell, but
also for its point values at the cell interfaces. This provides a much more accurate basis
for the reconstruction of the pro�le. This approach was explored by Van Leer in the early
developments of the MUSCL scheme [1] but seems to have been abandoned. One of the
reasons may be that it was not clear at this time how the method should be generalized to
hyperbolic systems of conservation laws. Another reason may be that the publication did not
make clear how the PDEs describing other processes (such as the di�usion equation, source
terms, etc.) could be solved within the proposed framework.
The present paper aims to generalize the approach to one- and multi-dimensional hyperbolic

systems of conservation laws and to explain how it can be used to solve other types of PDEs.
Section 2 presents the principle of higher-order Godunov-type schemes. Section 3 the principle
of the approach for scalar conservation laws and hyperbolic systems of conservations laws.
Section 4 explains how it can be extended to the solution of partial di�erential equations other
than hyperbolic systems of conservation laws. Section 5 provides computational examples and
Section 6 is devoted to concluding remarks.

2. HIGHER-ORDER GODUNOV-TYPE SCHEMES

This section presents the principle of higher-order Godunov-type schemes for the solution
of one-dimensional hyperbolic systems of conservation laws. Such systems can be written in
conservation form as

@U
@t
+
@F
@x
=0 (1)

where U is the vector that contains the conserved variable, F is the �ux vector, x is the
space co-ordinate and t is time. The �ux F is a function of U. Note that Equation (1) can
be rewritten in non-conservation, or characteristic form, as

@U
@t
+A

@U
@x
=0 (2)

where A= @F=@U is the Jacobian matrix of F with respect to U. The characteristic form
is used in the development of higher-order Godunov methods, as shown below. Section 2.1
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presents the general principle of higher-order Godunov-type schemes. Section 2.2 details the
reconstruction process as it is used in classical schemes. Section 2.3 outlines the methodology
used to convert the General Riemann Problems (GRPs) at the cell interfaces to equivalent
Riemann problems (ERPs) that are solved to compute the intercell �uxes.

2.1. The six steps of Godunov-type algorithms

Higher-order Godunov-type algorithms can be decomposed into the following six steps.

(1) Space is discretized into volumes, also called cells, over which the average value of
U is assumed to be known at a given time tn. The average value of U over the cell
i at time level n is denoted by Uni .

(2) The second step, called reconstruction, consists of ‘guessing’ the variations of U within
each cell from the average values in the neighbouring cells. The reconstructed pro�le
at the abscissa x in the cell i at time level n is denoted by Ũ

n
i (x). The reconstruction

step is essential to the accuracy of the scheme. It is described in deeper detail in
Section 2.2.

(3) The reconstructed pro�les are used to construct Generalized Riemann Problems (GRPs)
at the interfaces between the computational cells. Such GRPs are de�ned as

Ui+1=2(x; tn)=



Ũ
n
i (x) for x¡xi+1=2

Ũ
n
i+1(x) for x¿xi+1=2

(3)

where xi+1=2 denotes the abscissa of the interface i + 1
2 between the cells i and i + 1.

(4) The GRPs at the cell interfaces are converted to ERPs

Ui+1=2(x; tn)=



Un+1=2i+1=2;L for x¡xi+1=2

Un+1=2i+1=2;R for x¿xi+1=2
(4)

where the (constant) left and right states Ui+1=2;L and Ui+1=2;R are such that the solution
of the ERP (4) yields the same average �ux as the solution of the GRP (3) between
the time levels n and n + 1. The next subsection explains how the ERPs can be
determined from the GRPs.

(5) The solution of the Riemann problem of Equation (4) depends only on the ratio
(x − xi+1=2)=(t − tn) [18, 19]. Therefore the solution Un+1=2i+1=2 of the ERP (4) is constant

at the location of the initial discontinuity, that is, at the interface i+ 1
2 . The �ux F

n+1=2
i+1=2

at the interface i + 1
2 between the time levels n and n+ 1 is computed as

Fn+1=2i+1=2 =F(U
n+1=2
i+1=2 ) (5)

(6) The �uxes at the interfaces between the cells are used to compute the solution at the
next time level n+ 1 as

Un+1i =Uni +
�t
�xi

(Fn+1=2i−1=2 − Fn+1=2i+1=2 ) (6)

where �t is the computational time step and �xi is the width of the cell i.
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2.2. The reconstruction step

The reconstruction step is a key factor to scheme accuracy. The nature of the reconstruction
function is de�ned a priori. The basic constraint on the reconstructed pro�le is that it should
satisfy mass conservation:

1
�xi

∫ xi+1=2

xi−1=2

Ũ
n
i (x) dx=U

n
i (7)

However, this condition is not su�cient to guarantee the uniqueness of the reconstruction
function. For instance the MUSCL/PLM schemes [1, 20] use a linear reconstruction

Ũ
n
i (x)= (x − xi)ani + bni (8)

where xi is the abscissa of the centre of the cell i. Equation (7) yields the following condition
on bni

bni =U
n
i (9)

and the vector slope ani is still to be determined. In the classical MUSCL scheme ani is taken
as a combination of the average values of U in the neighbouring cells

ani =2
Uni+1 −Uni−1

�xi−1 + 2�xi +�xi+1
(10)

The PPM [3] uses a parabolic reconstruction

Ũ
n
i (x)= (x − xi)2ani + (x − xi)bni + cni (11)

Substituting Equation (8) into Equation (7) leads to the following condition

�x2i
12

ani + c
n
i =U

n
i (12)

Two additional conditions must be supplied to guarantee the uniqueness of the reconstruction.
These conditions are supplied by prescribing the value taken by Ũ

n
i at the left- and right-hand

edges of the cell

Ũ
n
i (xi−1=2)=U

n
i;L

Ũ
n
i (xi+1=2)=U

n
i;R

(13)

where Uni;L and U
n
i;R are given by (for a uniform cell width):

Uni;L=
1
12 (−Uni−2 + 7Uni−1 + 7Uni −Uni+1)

Uni;R=
1
12 (−Uni−1 + 7Uni + 7Uni+1 −Uni+2)

(14)

These formulae are obtained by �tting a cubic polynomial in x in such a way that it veri�es
the conservation condition (7) over the two cells on the left- and right-hand side of a given
interface [3]. The �tting of the polynomial and the reconstruction within the cell are illustrated
by Figure 1.
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Figure 1. Principle of the PPM reconstruction. Fitting of a cubic polynomial for the computation of the
edge values (a) and parabolic interpolation within the cell (b).

Note that in these examples, the reconstructed pro�le may be further modi�ed in such a
way that the monotony of the solution is ensured. Monotony is achieved by adjusting the
reconstructed pro�le in the cell i in such a way that the following conditions are veri�ed:
(i) Ũ

n
i (x) lies between Uni−1 and U

n
i+1, (ii) Ũ

n
i (x) is monotone within the cell i, and (iii)

dŨ
n
i (x)=dx has the same sign as Uni+1 −Uni−1. Note that more elaborate procedures have been

introduced for one- and multi-dimensional MUSCL-type algorithms [4, 5]. The common point
between all higher-order Godunov-types schemes is that the conditions of the type (10, 13,
14) used to characterize the reconstruction within a given cell make use of the average values
of the variable U over the neighbouring cells. The proposed method is based on a di�erent
approach, as shown in Section 3.

2.3. Determination of the ERP

The method for the determination of the ERP is explained in detail in other publications (see
e.g. References [3, 21] or [22]). However, its principle is recalled herein because it forms the
basis for the reconstruction method proposed in Section 3. Consider two neighbouring cells
i and i + 1 where U has been reconstructed. The two pro�les Ũ

n
i (x) and Ũ

n
i+1(x) form the

GRP given by Equation (3) at the interface i+ 1
2 . The purpose is to transform this GRP into

an ERP of the form (4). To do so, the characteristic form (2) of the conservation law is
used. In a �rst step, U is rewritten as a combination of the eigenvectors of the characteristic
matrix A:

U(x; t)=
∑
p
�(p)(x; t)K(p) =KQ(x; t) (15)

where K(p) is the pth eigenvector of A, K is the matrix formed by the eigenvectors K(p),
�(p) is the pth wave strength and Q is the vector formed by the components �(p).
It is now explained how to determine the left state of the ERP. The �rst relation (15) is

substituted into Equation (2) to give:

@
@t
KQ+A @

@x
KQ=0 (16)
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Figure 2. Invariance of the wave strengths along the characteristic lines in the phase space.

Left-multiplying Equation (16) by the matrix K−1 leads to:

K−1 @
@t
KQ+K−1A

@
@x
KQ=0 (17)

K is approximated with the constant matrix Kni that can be taken out of the derivation operators
to give:

Kni
−1Kni

@
@t
Q+Kni

−1AniK
n
i
@
@x
Q=0 (18)

Note that the matrix product K−1AK is equal to the diagonal matrix � formed by the eigen-
values of A, Equation (18) becomes

@Q
@t
+�

@Q
@x
=0 (19)

Equation (19) is equivalent to the following set of relationships

d�(p)

dt
=0 along

dx
dt
= �(p) (20)

where �(p) is the pth eigenvalue of A. The invariance of the wave strengths along the char-
acteristic lines is used to determine the value of U on the left-hand side of the interface i+ 1

2
(Figure 2). From Equation (15), one can write

Ui+1=2;L(t)=
∑
p
�(p)i+1=2;L(t)K

(p) (21)

The summation in Equation (21) is split into two parts according to the sign of the eigenvalues

Ui+1=2;L(t)=
∑
p¿0

�(p)i+1=2;L(t)K
(p) +

∑
p¡0

�(p)i+1=2;L(t)K
(p) (22)

The value of �(p) with positive eigenvalues at the interface at a time t is deduced from the
reconstructed value at time level n. The invariance property as stated by Equation (20) is
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used to trace the pth wave strength backward in time in the cell i:

�(p)(xi+1=2; t)= �(p)(�(p); tn)= �̃
(p)(�(p)) for �(p)¿0 (23)

where x(p) = xi+1=2− (t− tn)�(p) is the abscissa of the foot of the pth characteristic line issued
form the interface i + 1

2 at time t (see Figure 2). Since the wave strengths with negative
eigenvalues travel in the direction opposite to the interface i + 1

2 they do not in�uence the
solution. Therefore, they can be taken equal to any arbitrary value. The simplest possible
solution is to use the cell average

�(p)(xi+1=2; t)= �(p)
n
i for �(p)¡0 (24)

The average value of U on the left-hand side of the interface is equal to

Un+1=2i+1=2;L =
1
�t

∫ tn+1

tn
Ui+1=2;L(t) dt=

1
�t

∫ tn+1

tn
�(p)i+1=2;LK

(p)ni (t) dt

=
∑
p
�(p)

n+1=2
i+1=2; LK(p)

n
i (25)

where �(p)
n+1=2
i+1=2; L denotes the average value of the pth wave strength on the left-hand side of

the interface between time levels n and n + 1. From Equations (23) and (24), �(p)
n+1=2
i+1=2; L is

given by

�(p)
n+1=2
i+1=2; L =




1
�(p)ni�t

∫ xi+1=2

xi+1=2−�(p)ni �t
�̃(p)

n
i (x) dx if �(p)

n
i¿0

�(p)
n
i if �(p)

n
i ¡0

(26)

Reasoning by symmetry, the right state of the ERP on the right-hand side of the interface is
given as

Un+1=2i+1=2;R =
∑
p
�(p)

n+1=2
i+1=2;RK(p)

n
i+1 (27)

where

�(p)
n+1=2
i+1=2;R =




1
�(p)ni+1�t

∫ xi+1=2

xi+1=2−�(p)
n
i+1�t

�̃(p)
n
i+1(x) dx if �(p)

n
i+1¿0

�(p)
n
i+1 if �(p)

n
i+1¡0

(28)

The determination of the left and right states of the ERP from the GRP can be summarized
as follows: the wave strengths that travel towards the interface are averaged over the domain
of dependence of the interface. The wave strengths that travel in the direction opposite to the
interface can be set equal to any arbitrary value, say the wave strength computed from the
cell average on the corresponding side of the interface.
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3. PROPOSED METHOD

The proposed method can be seen as a generalization to hyperbolic systems of conservation
laws of a reconstruction method originally proposed by Van Leer [1] for the solution of
scalar conservation laws. In the development of the MUSCL scheme Van Leer experimented
various methods for pro�le reconstruction. Quite ironically, the method that became popular
as embedded in the MUSCL scheme is the least accurate of the three approaches tested by
Van Leer. Section 3.1 presents the method as proposed by Van Leer [1] for the solution of the
scalar, linear advection equation. Section 3.2 generalizes this approach to hyperbolic systems
of conservation laws. Section 3.3 gives an outline of the method in algorithmic form.

3.1. Scalar conservation laws

The present subsection focuses on the principle of the method for the solution of scalar laws.
Consider �rst the scalar linear advection equation

@U
@t
+
@
@x
(�U )=0 (29)

the characteristic form of which is (under the assumption of a constant �)

@U
@t
+ �

@U
@x
=0 (30)

As mentioned in Section 2.2, the degrees of freedom in higher-order reconstructions are
eliminated by forcing the reconstructed pro�les to take speci�c values at the edges of the
computational cells. In classical higher-order Godunov-type schemes these edge values are
computed using the average values of the variable in the cells neighbouring the cell of interest,
see e.g. Equations (10), (13) and (14). However, Van Leer had experimented in Reference
[1] an approach where the values of U at the edges of the cell i were computed as

Un
i;L=U (xi+1=2 − ��t; tn−1)=



Ũ n−1
i−1 (xi−1=2 − ��t) if �¿0

Ũ n−1
i (xi−1=2 − ��t) if �60

Un
i;R=U (xi+1=2 − ��t; tn−1)=



Ũ n−1
i (xi+1=2 − ��t) if �¿0

Ũ n−1
i+1 (xi+1=2 − ��t) if �60

(31)

The formulae of Equation (31) are justi�ed by the invariance of U along the characteristic
lines as expressed by Equation (30). Travelling backwards in time along the characteristic
dx=dt= � allows the value at the cell interfaces at the time level n to be related to the
reconstructed pro�le at the time level n− 1 (Figure 2).
The approach is now extended to non-linear scalar laws, that is, to equations of the form

@U
@t
+
@F
@x
=0 (32)
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where the �ux F is a non-linear function of U . The characteristic form of Equation (32) is
Equation (30) where � is given by

�=
dF
dU

(33)

The non-linearity of the �ux function F induces a dependence of � on the conserved variable
U . The variability of � in space and time may trigger the appearance of shocks or rarefaction
waves in the solution. Consequently the pro�le is not necessarily continuous at the interface
i + 1

2 at the beginning of the time step between the time levels n and n + 1. Assume that
the values Un

i+1=2;L and U
n
i+1=2;R on the left- and right-hand sides of the interface i +

1
2 can

be determined at t= tn (how they are to be calculated is described in the next paragraph).
These two values are used to construct a Riemann problem, the solution Un

i+1=2 of which is
the value of U at the interface for a time t in�nitely close to tn. In the present approach,
Un
i+1=2 is used as the right-hand edge value of the reconstructed pro�le in the cell i and as
the left-hand edge value of the reconstructed pro�le in the cell i + 1,

Ũ n
i (xi+1=2)=U

n
i;R =U

n
i+1=2

Ũ n
i+1(xi+1=2)=U

n
i;L =U

n
i+1=2

(34)

It is now explained how the left and right states Un
i+1=2;L and U

n
i+1=2;R of the Riemann problem

should be determined. Extending Van Leer’s idea to non-linear scalar laws, it is chosen to
compute Un

i+1=2;L and U
n
i+1=2;R using the reconstructed pro�les Ũ

n−1
i at the previous time level

rather than the cell averages Un
i . This is done using the property of invariance of U along

the characteristic lines. Applying Equation (30) along the characteristic line issued from the
left-hand side of the interface i + 1

2 at t= t
n gives:

Un
i+1=2;L =U (xi+1=2 − �n−1i �t; tn−1)

= Ũ n−1
i (xi+1=2 − �n−1i �t) (35)

As mentioned in Section 2.3, Equation (35) is valid only if the characteristic line dx=dt= �n−1i
travels towards the interface i + 1

2 (that is, if �
n−1
i is positive). If �n−1i is negative, the

characteristic travels in the opposite direction to the interface and the pro�le in the cell i
does not in�uence the value of U at the interface. Therefore, Un

i+1=2;L can be taken equal to
any arbitrary value. As in Section 2.3, the simplest possible is to use the average value Un

i
over the cell. Applying a similar reasoning to the right-hand side of the interface leads to the
following relationships

Un
i+1=2;L=



Ũ n−1
i (xi+1=2 − �n−1i �t) if �n−1i ¿0

Un−1
i if �n−1i ¡0

Un
i+1=2;R=



Ũ n−1
i+1 (xi+1=2 − �n−1i+1 �t) if �n−1i+160

Un−1
i+1 if �n−1i+1¿0

(36)
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3.2. Generalization to hyperbolic systems of conservation laws

The principle of the approach remains the same as in the previous subsection: the edge values
Uni;L and U

n
i;R used for the reconstruction of U in the cell i are taken as

Uni;L=U
n
i−1=2

Uni;R=U
n
i+1=2

(37)

where Uni+1=2 is the solution of the Riemann problem (Uni+1=2;L;U
n
i+1=2;L) at the interface

i + 1
2 . As in the previous subsections, the left and right states of the Riemann problems

(Uni+1=2;L;U
n
i+1=2;L) are determined using the reconstructed pro�les at the previous time level

n − 1 rather than the cell averages at the current time level n. The method used for the
determination of the left state Uni+1=2;L is detailed hereafter.
The left state Uni+1=2;L is determined by applying the decomposition (15) on the left-hand

side of the interface i + 1
2

Uni+1=2;L =Ki+1=2;LQi+1=2;L (38)

As in the linear case, the proposed method consists in approximating the matrix K and the
wave strengths Q using the reconstructed pro�le at the previous time level n−1. As in Section
2.3, the matrix of eigenvectors is taken constant over the cell i

Ki+1=2;L =Kn−1i (39)

and the wave strengths are determined using Equation (20) that expresses the invariance of
the pth wave strength along the pth characteristic line

�(p)i+1=2;L = �̃
(p)n−1

i (xi+1=2 − �(p)n−1
i �t) (40)

Note again that Equation (40) is applied only if the pth characteristic travels towards the
interface, that is, if �(p)

n−1
i is positive. If �(p)

n−1
i is negative the pth wave strength does not

in�uence the solution and can be taken equal to �(p)
n−1
i . Reasoning by symmetry for the right

state of the Riemann problems leads to

�(p)i+1=2;L=



�̃(p)

n−1
i (xi+1=2 − �(p)n−1

i �t) if �(p)
n−1
i ¿0

�(p)
n−1
i if �(p)

n−1
i ¡0

�(p)i+1=2;R=



�̃(p)

n−1
i+1 (xi+1=2 − �(p)n−1

i+1 �t) if �(p)
n−1
i+1 60

�(p)
n−1
i+1 if �(p)

n−1
i+1 ¿0

Ki+1=2;L=Kn−1i

Ki+1=2;R=Kn−1i+1

(41)
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3.3. Outline of the algorithm

The algorithm is provided for hyperbolic systems of conservation laws. It is assumed that the
variable U has been reconstructed in all the cells.

(1) For each interface i+ 1
2 , compute the left and right states U

n+1=2
i+1=2;L and U

n+1=2
i+1=2;R of the

ERP using Equations (26) and (28).
(2) Use the solution Un+1=2i+1=2 of the ERP at each interface i+

1
2 to compute the �ux F

n+1=2
i+1=2

between the cells i and i + 1.
(3) Compute the cell average at the next time level using the balance equation (6).
(4) For each interface i+ 1

2 , compute the wave strengths and eigenvectors for the left and
right states of the Riemann problem at the time level n+1 by rewriting Equation (41)
between tn and tn+1:

�(p)i+1=2;L=



�̃(p)

n
i (xi+1=2 − �(p)ni�t) if �(p)

n
i¿0

�(p)
n
i if �(p)

n
i ¡0

�(p)i+1=2;R=



�̃(p)

n
i+1(xi+1=2 − �(p)ni+1�t) if �(p)

n
i+160

�(p)
n
i+1 if �(p)

n
i ¿0

Ki+1=2;L=Kni

Ki+1=2;R=Kni+1

(42)

and by rewriting U in the form (15) as a combination of the wave strengths

Un+1i+1=2;L=Ki+1=2;LQi+1=2;L

Un+1i+1=2;R=Ki+1=2;RQi+1=2;R
(43)

(5) Solve the Riemann problem (Un+1i+1=2;L;U
n+1
i+1=2;R) at each interface i+

1
2 . This yields the

solution Un+1i+1=2.
(6) Reconstruct the pro�le in each cell i at the time level n + 1 using the cell average

Un+1i obtained from the steps (1)–(3) and the values Un+1i−1=2 computed in steps (4)–
(5) to eliminate the remaining degrees of freedom in the reconstruction by enforcing
the following conditions

Ũ
n+1
i (xi−1=2)=Un+1i−1=2

Ũ
n+1
i (xi+1=2)=Un+1i+1=2

(44)

The reconstructions may be further modi�ed via pro�le limiting in order to enforce
the monotony of the solution.
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4. EXTENSION TO OTHER TYPES OF PARTIAL DIFFERENTIAL EQUATIONS

This section shows how the proposed approach can be extended to PDEs involving source
term and second- or higher-order space derivatives. The principle of the extension is explained
using the linear dispersion equation as an example. Both the conservative and non-conservative
version of the equation are considered. The present section is complemented with Appendix B
that provides a stability analysis for the explicit versions of the discretizations introduced
hereafter.

4.1. Conservative PDEs involving higher-order derivatives

The extension to conservative PDEs involving higher-order derivatives is explained on the
example of the dispersion equation in conservation form

@U
@t
+
@F
@x
= 0

F = k
@2U
@x2

(45)

for negative k. Assuming a uniform cell size �x, Equation (45) can be discretized for both
the cell averages and the cell interfaces as

Un+1
i =Un

i +
�t
�x

(Fn+1=2i−1=2 − Fn+1=2i+1=2 )

Un+1
i+1=2=U

n
i+1=2 + 2

�t
�x

(Fn+1=2i − Fn+1=2i+1 )

(46)

where Fn+1=2i is the �ux evaluated at x= xi. Note that F
n+1=2
i being a point value, it is not

necessarily equal to F(Un+1=2
i ). Note that in the case of a uniform cell width �x, the classical

�nite volume and �nite di�erence approaches yield the following semi-discretizations for the
derivatives:

Fn+1=2i+1=2 ≈k Ui−1 − 2Ui +Ui+1
�x2

Fn+1=2i ≈k Ui−3=2 − 2Ui−1=2 +Ui+1=2
�x2

(47)

Note that this semi-discretization is not the only possible one, but that o�-centring the estimate
of the derivatives in the direction of negative x allows the solution to be conditionally stable
for explicit discretizations. Substituting Equation (47) into Equation (46) leads to the following
relationships

Un+1
i =Un

i + k
�t
�x3

(Ui−2 − 3Ui−1 + 3Ui −Ui+1)

Un+1
i+1=2=U

n
i+1=2 + k

�t
�x3

(Ui−3=2 − 3Ui−1=2 + 3Ui+1=2 −Ui+3=2)
(48)

In this case the cell averages and the point values at the cell interfaces are computed indepen-
dently from each other. The stencil of the scheme involves four cells. The proposed approach

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1119–1162



1132 V. GUINOT

consists in using the following o�-centred estimates for the second-order derivatives

@2U
@x2

)
i+1=2

≈ aUi−1=2 + bUi+1=2 + cUi+1
�x2

(49a)

@2U
@x2

)
i
≈ dUi−1 + eUi + fUi+1=2

�x2
(49b)

The coe�cients a to f are determined as follows. U (x) is written in terms of Taylor series
expansions starting from xi and xi+1=2

U (1)(x) = Ui+1=2 + (x − xi+1=2) @U@x
)
i+1=2

+
(x − xi+1=2)2

2
@2U
@x2

)
i+1=2

+ �(x − xi+1=2)3 (50a)

U (2)(x) = U (xi) + (x − xi) @U@x
)
i
+
(x − xi)2
2

@2U
@x2

)
i
+ #(x − xi)3 (50b)

Equation (50a) allows Ui+1=2 and Ui+1 to be expressed as functions of Ui−1=2 and the �rst-
and second-order derivatives of U with respect to x

Ui−1=2=U (1)(xi−1=2)=Ui+1=2 −�x @U
@x

)
i+1=2

+
�x2

2
@2U
@x2

)
i+1=2

+ �1(�x3)

Ui+1=
1
�x

∫ xi+1=2

xi−1=2

U (1)(x) dx=Ui+1=2 +
�x
2
@U
@x

)
i+1=2

+
�x2

6
@2U
@x2

)
i+1=2

+ �2(�x3)

(51)

Substituting Equation (51) into Equation (49a) yields

@2U
@x2

)
i+1=2

≈ a+ b+ c
�x2

Ui+1=2 +
c − 2a
2�x

@U
@x

)
i+1=2

+
(a
2
+
c
6

) @2U
@x2

)
i+1=2

+ �4(�x) (52)

Comparing Equations (49a) and (52) yields the following conditions on a, b and c

a+ b+ c=0

c − 2a=0
a
2
+
c
6
=1

(53)

Solving the system (53) for a, b and c gives

@2U
@x

)
i+1=2

≈ 6
5�x2

(Ui−1=2 − 3Ui+1=2 + 2Ui+1) (54)
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Equation (50b) provides the expressions for Ui−1, Ui and Ui+1=2 to be used in Equation (49b):

Ui−1=
∫ xi−1=2

xi−3=2

U (2)(x) dx= U (xi)−�x @U
@x

)
i
+
13
24
�x2

@2U
@x2

)
i
+ #1(�x3)

Ui=
∫ xi+1=2

xi−1=2

U (2)(x) dx= U (xi) +
1
24
�x2

@2U
@x2

)
i
+ #2(�x3)

Ui+1=2=U (2)(xi+1=2)= U (xi) +
�x
2
@U
@x

)
i
+
1
8
�x2

@2U
@x2

)
i
+ #3(�x3)

(55)

Substituting Equation (55) into Equation (49b) yields

@2U
@x2

)
i
=
d+ e+ f
�x2

U (xi) +
f − 2d
2�x

@U
@x

)
i
+
13d+ e+ 3f

24
@2U
@x2

)
i

+ #4(�x) (56)

Comparing Equations (49b) and (56) leads to the following conditions on d, e and f

d+ e+ f=0

f − 2d=0
13d+ e+ 3f=24

(57)

Solving the system (57) leads to the following expression for the second-order derivative
at xi

@2U
@x2

)
i
≈ 3
2�x2

(Ui−1 − 3Ui + 2Ui+1=2) (58)

Substituting Equations (54) and (58) into Equation (46) gives

Un+1
i =Un

i +
6
5
k�t
�x3

(Ui−3=2 − 4Ui−1=2 + 2Ui + 3Ui+1=2 − 2Ui+1)

Un+1
i+1=2=U

n
i+1=2 +

3
2
k�t
�x3

(Ui−1 − 4Ui + 2Ui+1=2 + 3Ui+1 − 2Ui+3=2)
(59)

In contrast with the classical discretization (48), only three cells are needed in the dis-
cretization (59). Note that Equation (59) should be modi�ed when used in combination with
Godunov-type schemes. The reason is that the limiters embedded in most reconstruction pro-
cedures lead to pro�les that are discontinuous across the cell edges. The interface values Ui+1=2
on the right-hand side of Equation (59) should be replaced with the average of the values on
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each side of the interface:

Un+1
i =Un

i +
6
5
k�t
�x3

[
Ui−2;R +Ui−1;L

2
− 2(Ui−1;R +Ui;L) + 2Ui3

Ui;R +Ui+1;L
2

− 2Ui+1
]

Un+1
i;R =Un+1

i+1;L =
Un
i;R +U

n
i+1;L

2

+
3
2
k�t
�x3

(Ui−1 − 4Ui +Ui;R +Ui+1;L + 3Ui+1 −Ui+1;R −Ui+2;L)

(60)

4.2. Non-conservative PDEs involving higher-order derivatives

Consider now the non-conservative version of Equation (45)

@U
@t
+ k

@3U
@x3

= 0 (61)

where k is assumed to be negative as in the previous subsection. Since Equation (60) is
not in conservation form, it is not necessary to approximate the third-order derivative as
the di�erential of a �ux. This allows more compact approximations to be used. Retaining
the o�-centring approach used in the previous subsection and using third-order Taylor series
expansions, the following approximations can be proposed

@3U
@x3

)
i
≈ 6
�x3

(−Ui−1 + 4Ui−1=2 − 5Ui + 2Ui+1=2)

@3U
@x3

)
i+1=2

≈ 6
�x3

(−2Ui−1=2 + 5Ui − 4Ui+1=2 +Ui+1)
(62)

The semi-discrete form of Equation (61) becomes

Un+1
i =Un

i + 6
k�t
�x3

(Ui−1 − 4Ui−1=2 + 5Ui − 2Ui+1=2)

Un+1
i+1=2=U

n
i+1=2 + 6

k�t
�x3

(2Ui−1=2 − 5Ui−1 + 4Ui+1=2 −Ui+1)
(63)

This formulation uses only two cells in space. The modi�ed expression of Equation (63) to
be used with Godunov-type schemes with pro�le limiters is:

Un+1
i =Un

i + 6
k�t
�x3

[Ui−1 − 2(Ui−1;R +Ui;L) + 5Ui −Ui;R −Ui+1;L]

Un+1
i;R =Un+1

i+1;L =
Un
i;L +U

n
i+1;R

2

+6
k�t
�x3

[Ui−1;R +Ui;L − 5Ui−1 + 2(Ui;R +Ui+1;L)−Ui+1]

(64)
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4.3. Discretization of source terms

In the proposed approach, source terms must be used to update both the cell edges and the
cell averages. Consider the following PDE

@U
@t
= S(U; x; t) (65)

The explicit discretized form of Equation (63) is

Un+1
i =Un

i +�tS(U
n
i ; xi; t

n)

Un+1
i+1=2=U

n
i+1=2 + �tS(U

n
i+1=2; xi+1=2; t

n)
(66)

In some particular cases, an analytical expression can be found for the solution. This is the
case of the degradation equation with kinetics of arbitrary order

@U
@t
=−�U�(x; t) (67)

where � is the degradation constant and � is the order of the degradation kinetics. Equation
(67) admits the following analytical solution

U (t)=



U0 exp(−�t) if �=1

[U 1−�
0 + (1− �)�t] if � �= 1

(68)

Applying this solution between tn and tn+1 to both the cell average and the cell edge value
yields the following expressions

Un+1
i =



Un
i exp(−��t) if �=1

[Un
i
1−� + (1− �)��t]

1
1−� if � �= 1

Un+1
i+1=2=



Un
i+1=2 exp(−��t) if �=1

[Un
i+1=2
1−� + (1− �)��t]

1
1−� if � �= 1

(69)

Applying the analytical solution (69) eliminates the stability problems associated with explicit
discretizations of the type (66).

5. COMPUTATIONAL EXAMPLES

5.1. The scalar advection equation

The present section illustrates the application of the proposed approach to the scalar advection
equation (29). The new reconstruction algorithm was applied to the MUSCL scheme [1] and to
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Figure 3. Advection of an 11-cells-wide square and a triangular pro�le computed by the classical and
modi�ed MUSCL (top) and DPM (bottom) schemes for Courant numbers of 10−4 and 0.5.

the DPM scheme [21]. The modi�ed schemes were used to simulate the advection of a square
and a triangular pro�les in a uniform velocity �eld on a regular grid. In a �rst numerical
experiment, the initial width of both pro�les was set to 11 computational cells. In a second
experiment, the initial width of the pro�les was set to 5 cells. The results were compared to
those given by the classical versions of the schemes. Figure 3 shows the numerical solutions
obtained after transporting the 11-cells-wide pro�les over 100 cells. Figure 4 shows the re-
sults obtained with the 5-cells-wide pro�les. In both cases the values chosen for the Courant
number were 10−4 and 0.5. These values of the Courant number were chosen because they
represent very unfavourable conditions for the schemes (see Appendix A). For small values of
Cr the phase error is maximum and the global ampli�cation factor is minimum (however the
global ampli�cation factor of the modi�ed MUSCL is much larger than that of the original
MUSCL scheme). A Courant number of 0.5 corresponds to minimum values of the ampli-
�cation factor for all wave numbers. The solutions are displayed in the form of horizontal
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Figure 4. Advection of a 5-cells-wide square and a triangular pro�le computed by the classical and
modi�ed MUSCL (top) and DPM (bottom) schemes for Courant numbers of 10−4 and 0.5.

segments that give the average value of the computed variable over the cells. This type of rep-
resentation allows local extrema or small oscillations in the computed pro�les to be identi�ed
easily.
The computational results show that the pro�le limiters allow the phase error to be elim-

inated for both the original and modi�ed versions of the MUSCL and DPM schemes. As
expected from the amplitude portrait of the MUSCL scheme, the modi�ed versions of the
MUSCL and DPM preserve better the shape of the solutions than the original schemes. The
modi�ed DPM is seen to preserve the solutions better than the modi�ed MUSCL. In particular
the square pro�le is preserved for all values of the Courant number. Although damped to some
extent, the triangular pro�le is much less a�ected by numerical di�usion with the modi�ed
DPM than in the modi�ed MUSCL scheme. Also note that the original DPM scheme causes
an arti�cial compression of the triangular pro�le for Courant numbers smaller than 0.5. This
behaviour, that could be seen as valuable for the resolution of steep fronts, may turn out to
be a strong drawback when oscillatory solutions are to be modelled (see Section 5.3).
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Table I. Parameters for the advection–degradation test.

Symbol Meaning Value

L Length of the computational domain 200 m
U0 Initial condition 0 everywhere
Ub Left-hand boundary condition 1
� Advection velocity 0:5 m s−1

� Degradation coe�cient 5× 10−2 s−1

�x Cell width 1 m
�t Computational time step 0.01, 0.1 and 1 s

5.2. The scalar advection–degradation equation

This example shows an application of the modi�ed DPM scheme to the scalar advection–
degradation equation

@U
@t
+
@
@x
(�U )=−�U (70)

where � is the (positive, constant) degradation rate. The source term −�U in Equation (70)
is accounted for using a classical time splitting procedure, in which the advection terms are
solved using the modi�ed DPM and the degradation step is applied as in Equation (69).
The parameters of the test are speci�ed in Table I. The initial condition is the 11-cell-
wide triangular pro�le used in the pure advection test. The results for t=100 s are shown in
Figure 5. Except for the slight damping that a�ects the maximum of the pro�le, the numerical
solution is close to the analytical solution. Note that the smoothing of the peak in the numerical
pro�le is introduced by the DPM scheme (as shown by the pure advection test in Section
5.1) and not by the discretization of the source terms.

5.3. The scalar advection–dispersion equation

This subsection presents an application to the linear advection–dispersion equation in conser-
vation form

@U
@t
+
@
@x

(
�U + k

@2U
@x2

)
=0; k¡0 (71)

The advection and dispersion terms are taken into account separately using a classical time
splitting procedure. The dispersion terms are discretized using the explicit version of the
semi-discretization (60). The parameters of the test are speci�ed in Table II. Figures 6 to 12
compare the numerical results obtained from all possible combinations between the classical
and modi�ed MUSCL and DPM schemes for the advection part, and the classical and modi�ed
discretization of the dispersion terms. The solutions are compared to a so-called ‘converged
solution’ carried out using a cell size 100 times as small as that used for the comparisons.
These numerical experiments allow the following conclusions to be drawn.

(a) The classical MUSCL scheme yields a strong damping of the oscillations for Courant
numbers lower than 0.5 (see Figure 6). This damping is due to the pro�le limiter of
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Figure 5. Linear advection–degradation simulation using the modi�ed DPM scheme for the advection
term and the discretization (69) for the degradation term.
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Table II. Parameters for the advection–dispersion test.

Symbol Meaning Value

k Dispersion coe�cient 10−2 m3 s−1

L Length of the computational domain 200 m
� Advection velocity 1 m s−1

�x Cell width 1 m (0:01 m for the converged solution)
�t Computational time step 0.01, 0.1, 0.5 and 1 s

the scheme, the role of which is precisely to eliminate possible oscillations resulting
from the higher-order reconstruction.

(b) The modi�ed MUSCL scheme allows the damping of the oscillations to be reduced to
some extent (see e.g. the pro�les obtained for �t=0:01 s in Figure 7). The behaviour
of the numerical solution is less dependent on the Courant number than when the
classical MUSCL scheme is used.

(c) Using the modi�ed discretization for the dispersion terms in combination with the
original or modi�ed MUSCL scheme is not seen to introduce any signi�cant improve-
ment (Figures 8 and 9). Moreover, the explicit version of the semi-discretization (60)
being less stable than the original discretization (48), computational time steps larger
than 0:5 s cannot be used in these simulations (see Appendix B).

(d) The combination of the classical DPM and the classical discretization (48) of the dis-
persion terms produces unstable solutions for time steps smaller than 0.5 (Figure 10).
This is due to the over-compressive character of the original DPM scheme for values
of the Courant number smaller than 0.5. Note that arti�cial compression was already
observed in the pure advection simulations (Figures 3 and 4). This over-compressive
character of the original DPM, that may be valuable for the accurate resolution of
shocks and contact discontinuities, causes problems when oscillatory behaviours are
to be modelled. Pro�le compression indeed leads to an arti�cial ampli�cation of the
shorter waves, which may result in unstable solutions when dispersion-like equations
are to be solved.

(e) The modi�ed DPM allows overcompression to be eliminated to a large extent and the
stability of the numerical solution to be restored (Figure 11). Although the amplitude
of the shorter waves is exaggerated for small time steps, this was not observed to result
in unstable behaviours. Note that the explicit version of the semi-discretization (60)
for the dispersion terms is less stable than its classical counterpart and that time steps
larger than 0.5 produced unstable solutions (see Appendix B for a stability analysis).

(f) The combination of the classical DPM and the modi�ed discretization for the dispersion
terms yields unstable solutions for all possible values of �t. This was expected from
(d) because the original DPM causes instability of the solution for time steps smaller
than 0:5 s, while the modi�ed discretization of the dispersion terms is unstable for
�t¿0:5 s.

(g) The modi�ed DPM and the modi�ed semi-discretization of the dispersion terms yield
a better solution than in (e) for the smaller time steps (Figure 12). However the
oscillations become asymmetrical for larger time steps.
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Figure 6. Linear, conservative advection–dispersion of a square pro�le. Solutions at t=100 s using the
classical MUSCL scheme and the classical discretization for the dispersion terms.
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Figure 7. Linear, conservative advection–dispersion of a square pro�le. Solutions at t=100 s using the
modi�ed MUSCL scheme and the classical discretization for the dispersion terms.
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Figure 8. Linear, conservative advection–dispersion of a square pro�le. Solutions at t=100 s using
the classical MUSCL scheme and the modi�ed discretization for the dispersion terms. The explicit

discretization of the dispersion terms is unstable for �t=1 s.
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Figure 9. Linear, conservative advection–dispersion of a square pro�le. Solutions at t=100 s using
the modi�ed MUSCL scheme and the modi�ed discretization for the dispersion terms. The explicit

discretization of the dispersion terms is unstable for �t=1 s.
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Figure 10. Linear, conservative advection–dispersion of a square pro�le. Solutions at
t=100 s using the classical DPM and the classical discretization for the dispersion terms.

The solution is unstable for Courant numbers smaller than 0.5.

Form these numerical experiments it can be concluded that the modi�ed approach for pro�le
reconstruction allows the over-compressive behaviour of the DPM scheme to be eliminated to
a large extent. The modi�ed DPM gives better numerical solutions than the MUSCL scheme.
Although the modi�ed discretization of the dispersion terms brings a slight improvement over
the classical discretization, the most in�uential factor on the quality of the numerical solution
is the discretization of the advective terms in the PDE.

5.4. The one-dimensional shallow water equations

In this subsection the application of the proposed approach to the one-dimensional shallow
water equations is presented. In the absence of friction and bottom slope these equations can
be written in the form (1) by de�ning U and F as

U=

[
h

q

]
; F=

[
q

q2=h+ gh2=2

]
(72)

where g is gravitational acceleration, h is the water depth and q is the discharge per unit
width. Note that introducing friction and a bottom slope leads to introducing a source term in
the right-hand side of Equation (1). The Jacobian matrix A in Equation (2) and the matrix
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Figure 11. Linear, conservative advection–dispersion of a square pro�le. Solutions at t=100s using the
modi�ed DPM and the classical discretization for the dispersion terms.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:1119–1162



HIGH RESOLUTION GODUNOV-TYPE SCHEMES 1147

Initial profile

-1

0

1

0 100

x (m)

U U

U U

U
Converged solution

-1

0

1

100 200

x (m)

∆t  = 0.01 s

-1

0

1

100 200

x (m)

∆t  = 0.1 s

-1

0

1

100 200

x (m)

∆t = 0.5 s

-1

0

1

100 200

x (m)

U

Figure 12. Linear, conservative advection–dispersion of a square pro�le. Solutions at t=100s using the
modi�ed DPM and the modi�ed discretization for the dispersion terms. The explicit discretization of

the dispersion terms is unstable for �t ¿ 0:5 s.
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Table III. Parameters for the one-dimensional dambreak test.

Symbol Meaning Value

g Gravitational acceleration 9:81 m s−2

hL Initial water depth on the left-hand side of the dam 50 m
hR Initial water depth on the right-hand side of the dam 1 m
L Length of the computational domain 1000 m
q0 Initial unit discharge 0 m2 s−1

x0 Initial location of the dam 500 m
�t Computational time step 10−2, 10−3 and 10−4 s
�x Cell width 10 m

K of its eigenvectors are

A=

[
0 1

c2 − u2 2u

]
; K=

[
1 1

�(1) �(2)

]
(73)

where c=(gh)1=2 is the celerity of pressure waves in still water, u= q=h is the velocity and
�(p) (p=1; 2) are the eigenvalues of A:

�(1) = u− c
�(2) = u+ c

(74)

It is easy to check that the wave strengths are given by

�(1) = �(2) = h (75)

The performance of the classical and modi�ed DPM schemes is compared on a dambreak
simulation. The parameters of the test are given in Table III. Figure 13 shows the water
depth pro�les obtained at t=10 s for various values of the computational time step �t. Note
that the maximum permissible time step in this simulation is �t=0:3s, which corresponds to
a maximum Courant number of 1 at the location of the initial discontinuity. The time steps of
10−4, 10−3 and 10−2 s used in the simulations correspond to Courant numbers of 3:3× 10−4,
3:3× 10−3 and 3:3× 10−2, respectively. It can be seen from Figure 13 that the classical DPM
scheme allows for a better representation of the shock than the modi�ed DPM for small values
of the time step (Figure 13, upper right). This is due to the (previously mentioned) over-
compressive character of the original DPM. For larger values of �t however, the modi�ed
DPM leads to a steeper representation of the shock than the original scheme. Numerous
simulations using various values of �t show that the modi�ed DPM usually captures 90%
of the height of the shock within 3 cells. Note that the modi�ed DPM introduces a small,
arti�cial depression in the computed water depth at the junction between the intermediate
region of constant state and the head of the rarefaction wave. This non-monotony of the
pro�le was not seen to exert any in�uence on the stability of the solution.
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Figure 13. Dambreak simulation. Solutions obtained at t=10 s using the classical and modi�ed
DPM for various values of the time step.

5.5. The two-dimensional shallow water equations

The last example consists of an application of the classical and modi�ed DPM schemes to
the two-dimensional shallow water equations.

@U
@t
+
@F
@x
+
@G
@y
=0 (76)

where U, F and G are given by

U=



h

q

r


 ; F=




q

q2=h+ gh2=2

qr=h


 ; G=




r

qr=h

r2=h+ gh2=2


 (77)

where q and r are the unit discharges in the x- and y-directions, respectively. In the present
test, the contributions of the x- and y-�uxes to the solution were taken into account separately
via a time splitting procedure. Consequently, the pro�les were reconstructed independently
from each other in the x- and y-directions. This was intentional because the independence
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Figure 14. Geometry of the circular dambreak problem.

Table IV. Characteristics of the simulations for the two-dimensional dambreak test.

Symbol Meaning Value in simulation 1 Value in simulation 2

d Diameter of the circular region 32 m 32 m
g Gravitational acceleration 9:81 m s−2 9:81 m s−2

h0 Initial water depth outside the circular region 1 m 1 m
h1 Initial water depth inside the circular region 1:5 m 1:5 m
Lx Domain size in the x-direction 4000 m 4000 m
Ly Domain size in the x-direction 4000 m 4000 m
�x Cell size in the x-direction 40 m 40 m
�y Cell size in the x-direction 40 m 4 m

between the x- and y-reconstructions usually leads to undesirable phenomena, such as polariza-
tion of the �ow variables in the direction of the mesh and other manifestations of anisotropy in
the behaviour of the solution. The purpose of the test was to investigate whether the modi�ed
reconstruction could contribute to reduce such anisotropy e�ects. The numerical solution of
the idealised so-called circular dambreak problem illustrated by Figure 14 was investigated.
Consider a domain of dimensions Lx ×Ly, where water is initially immobile, at a uniform
depth h0, except in a circular region of diameter d where the depth is h1. Since the problem
has a radial symmetry, the solution is also expected to exhibit such symmetry. More consid-
erations about the solution of this problem can be found in References [23]. The parameters
of the test can be found in Table IV.
Figures 15 and 16 show the results obtained using the �rst-order, original Godunov scheme

[24], the original DPM and the modi�ed DPM method. These solutions are compared to a
converged solution, obtained on a square grid of width 4m. Tables V and VI summarize the
results obtained for the two simulations. The shock amplitude denotes the di�erence between
the water depth at the crest of the shock and the initial water depth h0. Owing to the splitting
between the two directions x and y, the computational solution is anisotropic, and therefore the
shock amplitude cannot be expected to be the same in all directions. Tables V and VI provide
the minimum and maximum shock amplitudes that were obtained for the three schemes. It also
provides the ‘amplitude ratio’ for each scheme, that is the ratio of the maximum amplitude
observed in the solution to that of the converged solution. The isotropy ratio is also indicated,
giving the ratio of the minimum to the maximum shock amplitude. An isotropy ratio of 1
indicates a totally isotropic solution, whereas a ratio of 0 indicates a total collapsing of the
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(a) (b)

(c) (d)

Figure 15. Simulation 1. Contour lines of the water depth after 400 s computed using the original
Godunov scheme (a), the classical DPM (b) and the DPM in combination with the proposed approach

(c) and compared to a converged solution (d).

Figure 16. Simulation 2. Contour lines of the water depth after 400 s computed using the original
Godunov scheme (a), the classical DPM (b) and the DPM in combination with the proposed approach

(c) and compared to the converged solution (d).

wave in one particular direction. In simulation 1, the minimum shock amplitude is found in
the x- and y-directions from the centre of the wave ring, whereas the lines of maximum
amplitude follow the diagonals of the grid. In simulation 2, the large aspect ratio �x=�y
introduces substantial numerical di�usion in the x-direction (where the grid is coarser) and
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Table V. Simulation 1. Minimum and maximum shock amplitude. The minimum amplitude is found
along the diagonal of the grid from the centre of the wave. The maximum shock amplitude is reached
along the x- and y-directions from the centre of the wave. The amplitude ratio indicates the ratio of
the maximum amplitude of the solution with that of the converged one. The isotropy ratio is that of

the minimum shock amplitude to the maximum shock amplitude.

Solution Minimum shock amplitude Maximum shock amplitude Amplitude ratio Isotropy ratio

Converged 0.073 0.073 1.0 1.0
Godunov 0.026 0.035 0.48 0.74
Original DPM 0.041 0.060 0.82 0.68
DPM modi�ed 0.051 0.064 0.88 0.80

Table VI. Simulation 2. Minimum and maximum shock amplitude. The minimum amplitude is found in
the x-direction from the centre of the wave, the maximum is reached in the x-direction. The amplitude
ratio indicates the ratio of the maximum amplitude of the solution with that of the converged one.

The isotropy ratio is that of the minimum shock amplitude to the maximum shock amplitude.

Solution Minimum shock amplitude Maximum shock amplitude Amplitude ratio Isotropy ratio

Converged 0.073 0.073 1.0 1.0
Godunov 0.018 0.062 0.85 0.29
Original DPM 0.027 0.064 0.88 0.42
DPM modi�ed 0.048 0.066 0.90 0.73

the minimum amplitude is found along the x-direction, while the maximum is located along
the y-direction from the centre of the circular wave.
Table V shows that for simulation 1 the Godunov scheme induces strong damping in the

solution, while the isotropy ratio remains satisfactory. As shown by Table VI, the amplitude
ratio increases in simulation 2, whereas the isotropy ratio decreases substantially. The original
DPM yields a better solution in as much as the shock is captured within fewer cells and the
minimum shock amplitude is larger than with the Godunov scheme. Still, the isotropy ratio
of 0.42 obtained in simulation 2 cannot be seen as satisfactory. The best results are obtained
with the DPM in combination with the proposed approach, as shown by the �gures and tables.
It should be noted however that the splitting between the x- and y-directions, together with
the divergent �ow in the central region resulting from the collapsing of the dam, induce
small wiggles in the central region of the wave (visible in Figure 15(c)). The wiggles are
not present in the solution of calculation 2 (see Figure 16(c)), because the slight numerical
di�usion induced by the coarse mesh in the x-direction was su�cient to eliminate them.
In order to improve further the performance of the scheme, a genuinely unsplit multi-

dimensional version should be designed. However, even in its split version, the proposed
method can be seen to yield a dramatic improvement over usual schemes.

6. CONCLUDING REMARKS

A method has been presented for increasing the accuracy of Godunov-type schemes. The key
factor for the accuracy of these schemes is the way the reconstruction is carried out and
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more particularly, how the values of the �ow variables at the edges of the computational
cells are computed. Classical higher-order Godunov methods use the average values over
several cells in each direction of space. The proposed method uses the point value of the
(already reconstructed) variable within the computational cells immediately neighbouring the
interface under consideration. This yields a substantial increase in scheme performance without
a need for an increasing the stencil of the scheme. Applications to the MUSCL and DPM
schemes for one-dimensional linear advection simulations show that damping of linear or
quasi-linear waves, that is generally mentioned to be a drawback of Godunov-type schemes,
is limited considerably by the new approach. When applied to the DPM reconstruction, the
proposed approach is also seen to reduce considerably the over-compression of steep fronts
compared to the classical reconstruction method. Such over-compression is often a source of
numerical instability when the PDEs to be solved include dispersion terms. This is because
the shorter waves in the (oscillatory) solution are ampli�ed arti�cially by over-compressive
limiters. The modi�ed reconstruction technique proposed here allows this drawback to be
eliminated. The method is extended to PDEs containing higher-order derivatives, such as
advection–dispersion equations, and to hyperbolic systems of conservation laws. Numerical
experiments indicate a gain of accuracy for the numerical solutions. Implementation of the
method for two-dimensional shallow water simulations show that the quality of numerical
solutions in the presence of weak shocks (that are prone to fast damping) also considerably
increases, even though the reconstruction procedure is split with respect to space. The quality
of the solution remains acceptable even when the computational grid is considerably distorted.
Nonetheless, the presence of small wiggles in regions of strong �ow divergence indicates that
an unsplit reconstruction method should give better results. The coupling of the present method
with genuinely unsplit, multi-dimensional methods such as that developed in Reference [25]
is the subject of ongoing research.

APPENDIX A. PHASE AND AMPLITUDE PORTRAITS OF THE CLASSICAL
AND MODIFIED MUSCL SCHEMES

This appendix is devoted to the phase and amplitude portraits of the original and compact
MUSCL schemes applied to the linear, scalar advection equation

@U
@t
+
@
@x
(�U )=0

where the advection velocity � is a constant. Note that such portraits are valid for linear
schemes with constant coe�cients. Therefore, the analysis is carried out for a uniform cell
size on the scheme without slope limiter. In what follows, the advection velocity is assumed
to be positive.

A1. Original MUSCL scheme

In the original MUSCL scheme the pro�le Ũ
n
i (x) of the variable U is reconstructed over the

cell i at time level n using a linear pro�le

Ũ
n
i (x)=U

n
i + (x − xi)�ni (A1)
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where Un
i is the average value of U over the cell i at tn, xi is the abscissa of the centre of

the cell i and �ni is the slope of the reconstructed pro�le, given by

�ni =
Un
i+1 −Un

i−1
xi+1 − xi−1 =

Un
i+1 −Un

i−1
2�x

(A2)

The average �ux Fn+1=2i+1=2 between tn and tn+1 at the interface i + 1
2 between the cells i and

i + 1 is given by

Fn+1=2i+1=2 = �U
n+1=2
i+1=2 (A3)

where Un+1=2
i+1=2 is the average value of U at the interface i + 1

2 between t
n and tn+1. Un+1=2

i+1=2 is
computed as the average of the reconstructed pro�le over the domain of dependence of the
interface i + 1

2 , that is between xi+1=2 − Cr�x and xi+1=2

Un+1=2
i+1=2 =

∫ xi+1=2

xi+1=2−Cr�x
Ũ
n
i (x) dx (A4)

Substituting Equations (A1) and (A2) into Equation (A4) and noting that xi+1=2 = xi + �x,
yields

Un+1=2
i+1=2 =

Cr − 1
4

Un
i−1 +U

n
i +

1− Cr
4

Un
i+1 (A5)

Substituting Equation (A5) into Equation (A3) leads to the following expression for the
�ux

Fn+1=2i+1=2 =
(
Cr − 1
4

Un
i−1 +U

n
i +

1− Cr
4

Un
i+1

)
� (A6)

The average value Un+1
i of U over the cell i at time tn+1 is given by the classical balance

over the cell

Un+1
i =Un

i +
�t
�x
(Fn+1=2i−1=2 − Fn+1=2i+1=2 ) (A7)

Substituting Equation (A6) into Equation (A7) gives the following expression

Un+1
i =−�Un

i−2 + (Cr + �)U
n
i−1 + (1− Cr + �)Un

i − �Un
i+1

�=
1− Cr
4

Cr
(A8)

The phase and amplitude portraits are determined by seeking a solution in the form

Un
i =U0 exp(i��x + n��t) (A9)

where � is a pure imaginary number and � is a complex number with a real part �r and an
imaginary part �i. Substituting Equation (A9) into Equation (A8) and dividing by Un

i yields
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the following equation on � and �:

exp(��t) =−� exp(−2��x) + (Cr + �) exp(−��x)

+1− Cr + �− � exp(��x) (A10)

The (complex) quantity AN = exp(��t), also called the ampli�cation factor, is the factor by
which Un

i is multiplied form one time step to the next. If the modulus of AN is smaller than
unity and the solution is stable. Equation (A10) can be rewritten as

AN (Cr; ��x) =−� exp(−2��x) + (Cr + �) exp(−��x)

+1− Cr + �− � exp(��x) (A11)

It can be observed with Van Leer [1] that the following equality holds:

AN (1− Cr; ��x)= exp(−��x)AN (Cr; ��x) (A12)

where the upper bar indicates the complex conjugate. Equation (A12) implies in particular
that

|AN (1− Cr)|= |AN (Cr)| (A13)

Therefore the minimum of the modulus of the ampli�cation factor is obtained for Cr= 1
2 . It

is equal to unity for Cr=0 and 1 and larger than unity for Cr¡0 or ¿1. These are the
classical stability properties of the MUSCL scheme.
Another quantity of interest is the celerity factor CN de�ned as

CN =− Im(AN )
��xCr

(A14)

that expresses the ratio of the propagation celerity of the numerical solution to the analytical
solution. Eventually, the performance of the scheme can be analysed in the light of the global
amplitude convergence factor AG de�ned as [26]

AG= |AN |1=Cr (A15)

The global amplitude convergence factor indicates the evolution of the scheme performance
with the computational time step for a given discretization of the computational domain.
Assuming that the cell size �x is known, the number M of time steps needed to compute
the solution over a given time interval is proportional to the inverse of the time step, that is,
to the inverse 1=Cr of the Courant number. Therefore the �nal amplitude of the numerical
solution is equal to the initial amplitude multiplied by |AN |M , which is proportional to AG as
given by Equation (A15).
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A2. Modi�ed MUSCL scheme

The reconstruction of the modi�ed MUSCL scheme is also given by Equation (A1). The
di�erence with the original MUSCL lies in the method used for the calculation of U at the
interfaces of the cell i. In the present approach, Un+1=2

i+1=2 is computed by tracing the Riemann
invariant U backwards in time along the characteristic line dx=dt= �:

Un+1
i; R =Un+1

i+1; L= Ũ
n
i (xi+1=2 − ��t)

= Ũ
n
i (xi+1=2 − Cr�x) (A16)

Substituting Equation (A1) into Equation (A16) and noticing that xi+1=2 = xi +�x=2 yields

Un+1
i+1; L=U

n+1
i; R =Un

i +
(
1
2

− Cr
)
�ni�x (A17)

The slope �n+1i is computed as

�n+1i =
Un+1
i; R −Un+1

i; L

�x
(A18)

Substituting Equation (A17) into Equation (A18) leads to

�n+1i =
Un
i −Un

i−1
�x

+
(
1
2

− Cr
)
(�ni − �ni−1) (A19)

The average Un+1=2
i+1=2 at the interface i + 1

2 is obtained by substituting Equation (A1) into
Equation (A4)

Un+1=2
i+1=2 =U

n
i + (1− Cr)�x

2
�ni (A20)

Substituting Equation (A20) into Equations (A3) and (A7) gives the following expression

Un+1
i =CrUn

i−1 + (1− Cr)Un
i + (1− Cr)Cr�x

2
(�ni−1 − �ni ) (A21)

Equations (A19) and (A21) can be rewritten in vector form as

Vn+1i =EVni (A22)

where

Vni =

[
Un
i

�x�ni

]
; E=



Cr	−1 + 1− Cr (1− Cr)Cr

2
(	−1 − 1)

1− 	−1
(
1
2

− Cr
)
(1− 	−1)


 (A23)

where 	 is the forward shift operator de�ned as

	Un
i =U

n
i+1 (A24)
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The solution of Equation (A22) is sought in the form

Un
i =U0 exp(�n�t + i��x)

�ni =�0 exp(�n�t + i��x)

}
(A25)

From (A24), the forward shift operator 	 is given by

	= exp(��x) (A26)

and E becomes

E=



Cr exp(−��x) + 1− Cr 1

2
− Cr

1− exp(−��x)
(
1
2

− Cr
)
[1− exp(−��x)]


 (A27)

The eigenvalues of E are


(1) =
e11 + e22

2
− 1
2
[(e11 + e22)2 + 4(e21e12 − e11e22)]1=2


(2) =
e11 + e22

2
+
1
2
[(e11 + e22)2 + 4(e21e12 − e11e22)]1=2

(A28)

where epq denotes the element on the pth row and qth column of E. These eigenvalues are
ampli�cation factors for the eigenvectors of the matrix E. The variable vector V can be viewed
as the sum of two independent signals propagating at di�erent speeds. The ampli�cation factor
of the pth signal is A(p)N =
(p) (p=1; 2) and its celerity factor is given by

C(p)N =− Im(A
(p)
N )

��xCr
; p=1; 2 (A29)

It can be noticed that the properties (A12) and (A13) also hold for both signals:

A(p)N (1− Cr; ��x)=exp(−��x)A(p)N (Cr; ��x)
|A(p)N (1− Cr)|= |A(p)N (Cr)|


 p=1; 2 (A30)

Consequently the minimum of the modulus each ampli�cation factor is obtained for Cr= 1
2

and the numerical solution is stable for Courant numbers between 0 and 1.
Figure A1 shows the variations of the ampli�cation factor, the celerity factor and the global

amplitude convergence factor (de�ned by Equation (A15)) as functions of the wave number
M =2�=(��x) for various values of the Courant number. These plots can be interpreted as
follows:

- The celerity factor of the �rst signal in the compact MUSCL scheme is negative. It
means that this signal travels in the opposite direction to that of the analytical solution.

- However, the ampli�cation factor of this signal converges to a value smaller than unity
as the wave number M tends to in�nity. This means that the signal is damped within a
few time steps and does not induce a large error in the numerical solution.
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- Both the amplitude and celerity factor of the second signal in the compact MUSCL
scheme tend to unity as the wave number tends to in�nity. This indicates convergence
of the numerical solution to the analytical solution.

- The modulus of the ampli�cation factor of the second signal is always larger than the
modulus of the ampli�cation factor of the original MUSCL scheme. Therefore, the nu-
merical solution can be less a�ected by damping with the compact than with the classical
MUSCL scheme.

It should be remembered however that these conclusions are derived for the unlimited
versions of both the classical and compact MUSCL scheme (because such versions verify
the assumption of linear schemes with constant coe�cients, while the addition of limiters
invalidates this assumption). Incorporating limiters to the schemes may cause the numerical
solutions to behave in a slightly di�erent way from what can be concluded from the amplitude
and phase portraits.
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Figure A1. Ampli�cation factor (top), celerity convergence factor (middle) and global ampli�cation
factor (bottom) of the classical (left) and compact (right) MUSCL schemes. The contour lines for the
ampli�cation factors start from 0.95 with a spacing of 0.05. The thick contour line on the celerity

convergence factor corresponds to unity.
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APPENDIX B. STABILITY ANALYSIS OF THE CLASSICAL AND MODIFIED,
EXPLICIT DISCRETIZATIONS OF THE DISPERSION EQUATION

B1. Stability analysis of the classical discretization

The explicit version of the classical semi-discretization (48) is

Un+1
i =Un

i + (U
n
i−2 − 3Un

i−1 + 3U
n
i −Un

i+1)D (B1)

where D= k�t=�x3 is a dimensionless number playing the same role as the Courant number
plays for the advection equation. Note that Equation (B1) can be applied indi�erently to the
cell averages Ui and to the interface values Ui+1=2 by rede�ning the convection for indexing.
Also note that k is assumed to be negative. The solution of Equation (B1) is sought in the
form given by Equation (A9). Substituting Equation (A9) into Equation (B1) yields

AN =1+ [exp(−2i��x)− 3 exp(−i��x) + 3− exp(i��x)]D

=1+ [exp(−i��x)− 2 + exp(i��x)][exp(−i��x)− 1]D (B2)

where AN =Un+1
i =U n

i is again the ampli�cation factor of the numerical solution. Denoting by
z the complex number

z= exp(−i��x)− 1 (B3)

Equation (B2) can be rewritten as

AN =1+ (z + �z)zD (B4)

where the overbar denotes the complex conjugate. z is located on a circle of unit radius, the
centre of which is −1 in the complex plane. Therefore, AN is located on a circle of radius
(z+ �z)D tangent to the point +1 in the complex plane (Figure B1). The centre of this circle is
the point 1−(z+ �z)D. The circle intersects the axis of real numbers at the point 1−2(z+ �z)D.
For the modulus of AN to be smaller than or equal to unity, the following condition must be

– 1 

σ x 
z

0 1 

zz +

  x 

AN

Dzz )(1 +−

Dzz )(21 +−

1 0– 1

∆ σ∆

Figure B1. Graphical representation in the complex plane of the ampli�cation factor of the
explicit version of the semi-discretization (48). Location of z (left) and AN (right). The unit

circle is represented by a dashed line.
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satis�ed

−161− 2(z + �z)D61 (B5)

The real part of z is negative and varies between −2 and 0. For Equation (B5) to be satis�ed,
D must satisfy the following conditions:

D60

D¿− 1
4

(B6)

The �rst condition implies that k should be negative, which is true by assumption. The second
condition leads to a stability constraint between k, �t and �x.

B2. Stability analysis of the modi�ed, conservative discretization

The present subsection deals with the stability of the explicit version of the modi�ed, con-
servative discretization (59). Equation (59) can be rewritten in the vector form (A22) by
de�ning E and V as follows:

E=



1 +

12D
5
(1− 	) 6D

5
(	−2 − 4	−1 + 3)

3D
2
(	−1 − 4 + 3	) 1 + 3D(1− 	)


 ; V=

[
Un
i

Un
i+1=2

]
(B7)

E can be rewritten as

E=




1 +
12D
5
(1− 	) 6D

5
(	−2 − 3	−1)(1− 	)

3D
2
(	−1 − 3)(1− 	) 1 + 3D(1− 	)


 (B8)

where 	 is the forward shift operator. The eigenvalues �(p) (p=1; 2) of E are given by

�(1)=a− (a2 − b)1=2

�(2)=a+ (a2 − b)1=2


 (B9)

where a and b are de�ned as

a=1+
27D
10
(1− 	)

b=
	
5
[3(	−2 − 3	−1)(1− 	)D]2

(B10)

The discretization is stable if the modulus of both �(1) and �(2) is smaller than unity. Owing to
the complexity of the expressions (B10), relating this condition to a necessary and su�cient
condition on D is very di�cult. This has not been done so far. However, a su�cient condition
can be derived. Observing that instability �rst appears for the smaller wave numbers (i.e. for
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	= exp(−i�)= − 1), the discretization is stable if the modulus of AN is stable for 	= − 1.
From the expressions of a and b, this yields the following condition on D:

D¿
135− 25√259

5746
≈ −4:65× 10−2 (B11)

which is �ve to six times as small as the permissible range for D in the case of the classical
discretization.

B3. Stability analysis of the non-conservative discretization

A su�cient condition for the stability of the non-conservative discretization (63) is now
derived. Equation (63) is rewritten in the vector form (A22) by de�ning E and V as

E=

[
1 + 6(	−1 + 5)D −12(1 + 2	)D
−6(5	−1 + 1)D 1 + 12(	−1 + 2)D

]
; V=

[
Un
i

Un
i+1=2

]
(B12)

The eigenvalues of E are given by Equation (B9), where a and b are de�ned as

a=1+ 9(	−1 + 3)D

b=72(5	−1 + 1)(1 + 2	)D2
(B13)

Following the same reasoning as in the previous subsection, the following su�cient condition
is obtained for D

D¿
3− √

33
48

≈ −5:71× 10−2 (B14)
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